	UNIT 1 – LINEAR MODEL								
	PART A								
1.	 Which one of the following can be made an optimal solution? a) Feasible solution b) Degenerate solution c) Unbounded solution d) None of the above 								
2.	If a constraint with = type, then variable should be addeda) Slackb) Surplusc) Artificiald) Decision	(Remember)							
3.	The intersection of key row and key column element is called a) Pivot element b) Key element c) Both A & B d) None of the above	(Remember)							
4.	To apply the simplex method to solve an LP problem, all the R.H.S values shouldbe	(Remember)							
5.	Big M method also known as methoda) Simplexb) Graphicalc) Penaltyd) Dual simplex	(Remember)							
6.	LP model is based on the assumptions ofa) Proportionalityb) Additivityc) Certaintyd) All of the above	(Remember)							
7.	Any solution to a LPP which satisfies the non- negativity restrictions of the LPP is called its a) Unbounded solution b) Optimal solution c) Feasible solution d) Both A & B	(Remember)							
8.	Graphical method can be applied to solve a LPP when there are only variable a) One b) More than One c) Two d) Three	(Remember)							
	PART B								
1.	Explain the term feasible solution.	(Understand)							
2.	Show the applications of OR.	(Understand)							
3.	Explain the term surplus variable.	(Understand)							
4.	Explain dual problem of LP.	(Understand)							
5.	Explain the term optimal solution.	(Understand)							
6.	llustrate the limitations of graphical method of solving LPP.	(Understand)							
7.	Explain the term feasible region.	(Understand)							
8.	Explain the term optimal solution.	(Understand)							

]	PART C				
1.	A paper mill p material rest 300 tonnes of gr requires 0.2 and corresponding p LPP to maximiz	X and Y. Because of raw 400 tonnes of grade X and oduction hours in a week. It s X and Y respectively with h. Formulate the above as a	(8 Marks) (Apply)					
2.	2. A firm manufactures two types of products A & B, and sells them at a unit profit of Rs.2 on A and Rs. 3 on B. Each product is processed on two machines G & H. One unit of the type A requires 1 min. of processing time on G and 2 min on H. One unit of type B requires 1 min of processing time on each of G & H. The machine G is available for not more than 6 h and 40 mins, while H is available for not more than 10 hours during any day. Formulate the LPP o maximize profit.							
3.	Use Graphical Maximiz	method to solve $Z = 6X_1 + $	olve the follo 5X ₂	owing LP pro	blem to	(8 Marks) (Apply)		
	Subject t	o $X_1 + 3$	$5X_2 \leq 5$					
		$3X_1 +$	$2X_2 \leq 12$					
		X_1	, $X_2 \ge 0$					
4.	4. Use Simplex method to formulate the following LP problem and find out init							
	basic feasible solution.							
	Maximize $Z = 3X_1 + 2X_2 + 5X_3$							
	Subject t	o $X_1 + 4$	$4X_2 \leq 420$					
		$3X_1 +$	$2X_3 \le 460$					
		$X_1 + 2$	$2X_2 + X_3 \le 4$	30				
		X_1, X	$_2 \geq 0$					
5.	A firm produces	s three produ	ucts. These p	products are	processed on three different	(8 Marks)		
	machines. The	time requir	ed to manu	facture one	unit of each of the three	(Apply)		
	products and dat	ly capacity of	of the three r	nachines are	given in the table below:			
	Machine	T Product 1	ime per unit (n Product 2	ninutes) Product 3	Machine capacity (min/day)			
	M1	2	3	2	440			
	M2	4		3	470			
	It is required to	2 determine	the number	 • of units to	430 be manufactured for each			
	product daily. T respectively. It market. Formula	The profit pe is assumed ate the mathe	r unit for pr that all the ematical for t	oduct 1, 2 an amounts pro the problem.	ad 3 is Rs.4, Rs.3 and Rs.6 duced are consumed in the			

	UNIT 2 – TRANSPORTATION AND ASSIGNMENT MODEL							
	PART A							
1.	VAM stands for	(Remember)						
	a) Vogel's Approximation Method b) Voges Approximation Method							
	c) Vowel's Approximation Method d) Volt's Approximation Method							
2.	How do you convert unbalanced TP into balanced TP by adding	(Remember)						
	a) Dummy activity b) Dummy row							
	c) Dummy column d) Neither Dummy row / Dummy column							
3.	MODI stands for	(Remember)						
	\a) Modified Distribution b) Maximum distribution							
	c) Minimum distribution d) Medium distribution							
4.	MODI method is used to obtain	(Remember)						
	a) Optimal solution b) Optimality test							
	c) Both A & B d) None of the above							
5.	TSP stands for	(Remember)						
	a) Transportation Problem b) Travelling Salesman Problem							
	c) Travelling Schedule Problem d) Task Scheduling Problem							
6.	Degeneracy in an m x n transportation problem occurs when the number of	(Remember)						
	occupied cells is less than							
	a) m-n-1 b) m+n+1 c) m+n-1 d) 2m+3n-1							
7.	In a travelling salesman problem, the optimal solution is determined by using	(Remember)						
	a) Johnson's algorithm b) Simplex algorithm							
	c) Transportation algorithm d) Assignment algorithm							
8.	8 In an assignment problem, if the number of jobs are not equal to the number	(Remember)						
	of resources, it means that the problem is							
	a) Not optimal b) Not balanced c) Not feasible d) Not ideal							

]	PART B					
1.	Explain transportation mod	el					(Understand)		
2.	2. Explain balanced assignment problem.								
3.	3. Explain unbalanced transportation problem. How do you balance it?								
4.	4. Explain travelling salesman problem								
5.	<i>Explain the methods to find basic feasible solution of a transportation problem</i>								
6.	Compare transportation mo	del an	d assign	ment mo	del.		(Understand)		
7.	7. If each entry of the cell is increased by 3 in a 4*4 assignment problem, what is the effect in optimal value?								
8.	Explain the conditions for opt	imal so	olution re	eached in a	ı travell	ing salesman problem.	(Understand)		
	PART C								
1.	Find the basic feasible solu	tion fo	or the fol	llowing tr	anspor	tation problem using	(8 Marks)		
	i) North-West Corner	r Rule					(Apply)		
	-		7	Го		Supply			
		4	6	8	8	40			
	From	6	8	6	7	60 50			
	Domand	$\frac{2}{20}$	/ 20	<u>6</u> 50	8 50	50			
	Demand	20	30	50	30				
2.	Solve the following Transp	ortatio	on Probl	em startir	ig with	the initial solution obtain	(8 Marks)		
	by VAM.						(rippiy)		
			D	estination	ı				
		г	D_1	$D_2 D_3$	D ₄	Supply			
	Origin C	\mathbf{D}_1	2	2 2	1	3			
		\mathbf{y}_2	10 7	8 5 6 6	4 Q	5			
	Real	uired	4	3 4	4				

3.	Solve the following Tran	solution obtain	(8 Marks)						
	by VAM.								(Apply)
	Destination								
			D_1	D_2	D_3	D_4	Supply		
	Origin	O ₁	2	2	2	1	3		
	Origin	O_2	10	8	5	4	7		
		O ₃	7	6	6	8	5		
	R	equired	4	3	4	4			
4.	Solve the following Trav	velling Sal	esman	Proble	em.				(8 Marks)
	To City								
		А	E	3	C	D			
		A		8	0	70	50		
	From Ci	^{ty} B	20	-	-	60	40		
		С	30	10	00		30		
		D	70	5	0	40			
5.	Solve the following Tran	nsportation	n Probl	em sta	rting	with	the initial	solution	(8 Marks)
	obtained by Least Cost N	Method.							(Apply)
	Destination								
			А	В	С	D	Supply		
	a	1	11	20	7	8	50		
	Source	2	21	16	20	12	40		
		3	8	12	18	9	70		
		Demand	30	25	35	40	•		

	UNIT 3 – NETWORK MODEL							
	PART A							
1.	In which model, all the nodes must be connected with minimum distance?	(Remember)						
	a) Shortest path b) Maximal flow							
	c) Minimal spanning tree d) Critical path							
2.	PERT stands for	(Remember)						
	a) Problem evaluation review technique							
	b) Project evaluation review technique							
	c) Platform evaluation review technique							
	d) Prevention evaluation review technique							
3.	Which method is activity based?	(Remember)						
	a) Shortest path b) Critical path method							
	c) Minimal spanning tree d) Project evaluation review technique							
4.	Which activity is denoted by $A < B$?	(Remember)						
	a) Dummy b) Predecessor							
	c) Successor d) Critical							
5.	Which method is a probabilistic approach?	(Remember)						
	a) CPM b) PERT c) PRIM'S d) DIJKSTRA'S							
6.	Which one of the following is consuming resources like time, money, etc.?	(Remember)						
	a) Node b) Activity							
	c) Event d) None of the above							
7.	Which activity is denoted by $B > A$?	(Remember)						
	a) Dummy b) Predecessor							
	c) Successor d) Critical							
8.	Which network model is used to transfer of fluids (like water, oil, etc.,) from one	(Remember)						
	location to another location?							
	a) Minimal spanning tree b) Critical path							
	c) Shortest path d) Maximal flow							

	PART B												
1.	Exp	lain the thre	e main phase	es of p	roject.								(Understand)
2.	List	some netwo	ork schedulir	ig tech	iniques	5.							(Understand)
3.	Exp	lain optimis	tic time and	pessin	nistic t	ime.							(Understand)
4.	. Explain critical path and shortest path.											(Understand)	
5.	Explain critical path.											(Understand)	
6.	Explain maximal flow model.											(Understand)	
7.	Wri	te and expla	in the formu	la for	compu	ting ex	pected	l durati	on and	d expect	ted		(Understand)
	vari	ation in PEF	RT.										
8.	Con	npare CPM	and PERT.										(Understand)
	 Ρλρτ (
1													
1.	Con	isider the de	tails of a dist	ance r	networ.	k as sh	own b	elow.					(8 Marks) (Apply)
	(i) Construct a project network											(11001)	
		(ii) D	etermine the	minir	nal spa	nning	tree fr	om nod	le 1 to	5	-		
		Activ	ity 1-2	1-3	1-4	2-3	2-5	3-4	3-5	4-5			
		Distar (mete	nce rs) 10	12	25	13	22	18	20	24			
		(inece	10)										
2.	Con	sider the de	tails of a dist	ance r	networ	k (mete	ers) as	shown	belov	V.			(8 Marks)
		(i)					C	onstruc	et a pr	oject ne	twor	'n	(Appiy)
		Arc	Distance	A	rc	Dista	ance	Are	с	Distar	nce		
		1-2	8	2	-7	4		6-8	3	9			
		1-3	5	3	-4	5		6-9)	15			
		1-4	7	3	-6	6		7-9)	12			
		1-5	16	4	-5	8		8-9)	6			
		2-3	15	4	-6	12	2						
		2-6	3	5	-8	7	,						

3.	3. Consider the details of a distance network as shown below.									
	(i) Co	nstruct a p	roject network	K					(Apply)	
	(ii) Det	termine th	e shortest path	n from node 0 t	io 5					
		Г								
			Arc	Distan	Distance					
			0-1	11						
			0-2	12						
			1-3	12						
			2-1	1						
		_	2-4	11						
		-	3-4	7						
		-	3-5	19						
	Consider the d	letails of a	4-5 distance netw	ork as shown	pelow				(8 Marks)	
т.	Consider the d		distance netw	ork as shown		•			(Apply)	
	((1) Constru	ict a project ne	etwork						
	(i	ii) Determ	ine the expect	ed standard var	riation	1				
			Т	Duration (mon	ths)					
			Ontimistic	Most likely	Pese	simistic				
		Activity	time (t _o)	time (t _m)	tin	ne (t _p)				
		1-2	3	15		6				
		1-3	2	14		5				
		1-4	6	30		12				
		2-5	2	8		5				
		2-6	5	17		11				
		3-6	3	15		6				
		4-7	3	27		9				
		5-7	1	7		4				
		6-7	2	8		5				
		<u> </u>	•	•						
5.	5. Consider the details of a distance network (months) as shown below.									
	(i) Construct a project network									
		termine th	e critical path	with its duration	$\frac{5n}{2}$	2.6	15	5.6		
	Activity	1-2 1-	$\frac{-5}{20}$ 1-4 2	$\frac{2-3}{6}$ 24	3-3 10	3-0	4-5	J-0	4	
	1 ime duration	23 8	20 I	0 24	18	4	19	10	4	

	UNIT 4 – INVENTORY AND REPLACEMENT MODEL							
	PART A							
1.	The inventory may be categorized as	(Remember)						
	a) Raw materials inventory b) In-process inventory							
	c) Finished goods inventory d) All the above							
2.	The inventory needs to be maintained to decrease the	(Remember)						
	a) Shortage costs b) Setup costs c) Loss of goodwill d) All the above							
3.	When the demand in practical situation and is not known accurately then the	(Remember)						
	model is called as							
	a) Probabilistic model b) Deterministic model							
	c) Uniform model d) Variable model							
4.	Which of the following cost always increases?	(Remember)						
	a) Capital cost b) Maintenance cost c) Resale value d) None of							
	the above							
5.	In which replacement, the item is replaced at a particular interval of time	(Remember)						
	expecting its failure?							
	a) Individual replacement b) Group replacement							
	c) Individual / Group replacement d) None of the above							
6.	Which of the following is an inventory management technique?	(Remember)						
	a) HML analysis b) VED analysis c) ABC analysis d) All the above							
7.	The capital cost items are replaced at the end of 'n' years when the cost	(Remember)						
	at the end of 'n' years is minimum.							
	a) Running cost b) Average cost							
	c) Maintenance cost d) Capital cost							
8.	Average cost of replacement is	(Remember)						
	a) $P(n) / n$ b) $P(n) / R_n$ c) $P(n) / \sum R_n$ d) $P(n) / C$							

PART B											
1.	Explain inventory.									(Understand)	
2.	Explain buffer stock	or safety	stock.							(Understand)	
3.	Classify the types of	replacem	ent me	thods.						(Understand)	
4.	Explain individual re	placemei	nt with	an exa	mple					(Understand)	
5.	Show the different in	ventory 1	nanage	ment to	echniqu	es.				(Understand)	
6.	Explain economic order quantity.										
7.	Show the different inventory management techniques.										
8.	Outline any two rease	ons for th	e repla	cemen	t of an it	em.				(Understand)	
				PA	RT C						
1.	Describe the various	selective	invent	ory cor	trol tecl	nniques	in deta	il.		(8 Marks)	
										(Understand)	
2.	List out the step by st	ep proce	dure fo	r ABC	analysi	s in inve	entory c	control.		(8 Marks)	
										(Understand)	
3.	The cost of a machine	e is Rs. 6	100 an	d its sc	rap valu	e is onl	y Rs. 10	00. The		(8 Marks)	
	maintenance cost are	found to	be							(Apply)	
	Year	1	2	3	4	5	6	7	8		
	Maintenance Cost (in Rs)	100	250	400	600	900	1250	1600	2000		
	When the machin	ne should	l be rep	laced?							
4.	A machine owner	finds fro	om his	past	records	that t	he cos	ts per	year of	(8 Marks)	
	maintaining a mach	ine who	se pur	chase	price is	Rs. 6	000 are	e given	below.	(Apply)	
		.1	1.		1	1		8			
	Determine at what ag	e the ma	chine s	hould t	be replace	ced.					
	Year	1		2	3	4		5	6		
	Maintenance Cost	100	0 1	200	1400	180	0 2	300	2800		
	Resale Value (in Rs) 300	0 1	500	750	375	5 2	200	200		
5.	An Electromechanica	l equipm	ent has	a purc	hase pr	ice of R	s. 7000	its resa	ale value	(8 Marks)	
	and running cost are	given bel	ow. W	hen to	replace	the mac	hine?			(Apply)	
	Year	1	2	3	4	5	6	7	8		
	Running Cost	2000	2100	2300	2600	3000	3500	4100	4600		
	Resale Value	4000	3000	2200	1600	1400	700	700	700		

	UNIT 5 – QUEUEING AND GAME THEORY								
	PART A								
9.	If a rectangular game has no saddle point, then the strategies of players area) Pure strategiesb) Mixed strategiesc) Unique strategiesd) Specific strategies	(Remember)							
10.	If a rectangular game has saddle point, then the strategies of players area) Pure strategiesb) Mixed strategiesc) Unique strategiesd) Specific strategies	(Remember)							
11.	Which one of the following is a part of every game theory model?a) Strategiesb) Probabilitiesc) Playersd) Payoffs	(Remember)							
12.	The rectangular games of (2xn) or (mx2) size without saddle point can be solvedbya) Graphical methodb) Arithmetic methodc) Matrix methodd) Approximation method	(Remember)							
13.	One of the methods for simplifying m x n game with mixed strategy is a) Dominance b) Graphical c) Saddle d) Minimax	(Remember)							
14.	Which of the following denotes the queue discipline?a) FIFOb) LIFOc) SIROd) All the above	(Remember)							
15.	In M M 1 queue, the service rate is a) Poisson b) Exponential c) Linear d) None of the above	(Remember)							
16.	A mixed strategy can be solved by method a) Algebraic b) Matrix c) Graphical d) All of the above	(Remember)							
	PART B								
9.	Explain the term pure strategy.	(Understand)							
10.	Explain why we use graphical method.	(Understand)							
11.	Explain the saddle point of a game.	(Understand)							
12.	Explain the term mixed strategy.	(Understand)							
13.	Explain zero sum games.	(Understand)							
14.	Explain non-zero sum games.	(Understand)							
15.	Explain dominance property.	(Understand)							
16.	What is queue discipline? Write its types.	(Understand)							

			PAI	RT C			
6.	Solve the following game.		р	Plaver F	<u> </u>		(8 Marks) (Apply)
			T	11	, 111		
		- [1	-		7	
		1	1	1	2		
	Player A	II	6	2	7		
		III	6	1	6		
7.	Solve the following game.						(8 Marks)
			Play	er B			(Apply)
			Ι	II			
		Ι	6	9			
	Player A	II	8	4			
		L					
8.	Solve the following game.		DI	D			(8 Marks) (Apply)
			Play	er B			(*******
		Г	Ι	II	7		
	Player A	Ι	20	-20			
	i lugoi / i	II	-25	25			
0	Solve the following game						(8 Marka)
7.	sorve the ronowing game.		Co	mpanv	В		(Apply)
			T	П	Ш		
		т [20	15	22	1	
	Company	т П	20	15	22 40		
	Company A	ш ш	10	40	40 25		
		111	18	20	25		
10.	Explain the queuing system.						(8 Marks)
							(Understand)